Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epidemiol Infect ; 151: e88, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37183701

RESUMO

Since the discovery of Legionnaires' disease (LD), limited progress has been made in understanding the epidemiology of sporadic cases of LD. Outbreaks have confirmed that air conditioning and potable water systems can be sources of community-acquired LD. However, studying the association between water quality and LD incidence has been challenging due to the heterogeneity of water systems across large geographic areas. Furthermore, although seasonal trends in incidence have been linked to increased rainfall and temperatures, the large geographic units have posed similar difficulties. To address this issue, a retrospective ecological study was conducted in Washington, DC, from 2001 to 2019. The study identified aseasonal pattern of LD incidence, with the majority of cases occurring between June and December, peaking in August, October, and November. Increased temperature was found to be associated with LD incidence. In surface water, higher concentrations of manganese, iron, and strontium were positively associated with LD, while aluminum and orthophosphate showed a negative association. Intreatment plant water, higher concentrations of total organic carbon, aluminum, barium, and chlorine were positively associated with LD, while strontium, zinc, and orthophosphate showed a negative association. The results for orthophosphates and turbidity were inconclusive, indicating the need for further research.


Assuntos
Legionella pneumophila , Doença dos Legionários , Humanos , Doença dos Legionários/epidemiologia , Doença dos Legionários/etiologia , Qualidade da Água , Estudos Retrospectivos , Estações do Ano , Alumínio , District of Columbia/epidemiologia , Microbiologia da Água , Surtos de Doenças , Temperatura
2.
Sci Rep ; 13(1): 6917, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37106001

RESUMO

In this work, the COVID-19 pandemic burden in Ukraine is investigated retrospectively using the excess mortality measures during 2020-2021. In particular, the epidemic impact on the Ukrainian population is studied via the standardized both all-cause and cause-specific mortality scores before and during the epidemic. The excess mortality counts during the pandemic were predicted based on historic data using parametric and nonparametric modeling and then compared with the actual reported counts to quantify the excess. The corresponding standardized mortality P-score metrics were also compared with the neighboring countries. In summary, there were three "waves" of excess all-cause mortality in Ukraine in December 2020, April 2021 and November 2021 with excess of 32%, 43% and 83% above the expected mortality. Each new "wave" of the all-cause mortality was higher than the previous one and the mortality "peaks" corresponded in time to three "waves" of lab-confirmed COVID-19 mortality. The lab-confirmed COVID-19 mortality constituted 9% to 24% of the all-cause mortality during those three peak months. Overall, the mortality trends in Ukraine over time were similar to neighboring countries where vaccination coverage was similar to that in Ukraine. For cause-specific mortality, the excess observed was due to pneumonia as well as circulatory system disease categories that peaked at the same times as the all-cause and lab-confirmed COVID-19 mortality, which was expected. The pneumonias as well as circulatory system disease categories constituted the majority of all cases during those peak times. The seasonality in mortality due to the infectious and parasitic disease category became less pronounced during the pandemic. While the reported numbers were always relatively low, alcohol-related mortality also declined during the pandemic.


Assuntos
COVID-19 , Doenças Cardiovasculares , Pneumonia , Humanos , COVID-19/epidemiologia , Pandemias , Ucrânia/epidemiologia , Estudos Retrospectivos , Mortalidade
3.
J Med Chem ; 65(20): 13784-13792, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36239428

RESUMO

In addition to general challenges in drug discovery such as the identification of lead compounds in time- and cost-effective ways, specific challenges also exist. Particularly, it is necessary to develop pharmacological inhibitors that effectively discriminate between closely related molecular targets. DYRK1B kinase is considered a valuable target for cancer-specific mono- or combination chemotherapy; however, the inhibition of its closely related DYRK1A kinase is not beneficial. Existing inhibitors target both kinases with essentially the same efficiency, and the unavailability of the DYRK1B crystal structure makes the discovery of DYRK1B-specific inhibitors even more challenging. Here, we propose a novel multi-stage compound discovery pipeline aimed at in silico identification of both potent and selective small molecules from a large set of initial candidates. The method uses structure-based docking and ligand-based quantitative structure-activity relationship modeling. This approach allowed us to identify lead and runner-up small-molecule compounds targeting DYRK1B with high efficiency and specificity.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Tirosina Quinases , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases , Ligantes , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...